Impact of Hybrid and Complex N-Glycans on Cell Surface Targeting of the Endogenous Chloride Cotransporter Slc12a2
نویسندگان
چکیده
The Na(+)K(+)2Cl(-) cotransporter-1 (Slc12a2, NKCC1) is widely distributed and involved in cell volume/ion regulation. Functional NKCC1 locates in the plasma membrane of all cells studied, particularly in the basolateral membrane of most polarized cells. Although the mechanisms involved in plasma membrane sorting of NKCC1 are poorly understood, it is assumed that N-glycosylation is necessary. Here, we characterize expression, N-glycosylation, and distribution of NKCC1 in COS7 cells. We show that ~25% of NKCC1 is complex N-glycosylated whereas the rest of it corresponds to core/high-mannose and hybrid-type N-glycosylated forms. Further, ~10% of NKCC1 reaches the plasma membrane, mostly as core/high-mannose type, whereas ~90% of NKCC1 is distributed in defined intracellular compartments. In addition, inhibition of the first step of N-glycan biosynthesis with tunicamycin decreases total and plasma membrane located NKCC1 resulting in almost undetectable cotransport function. Moreover, inhibition of N-glycan maturation with swainsonine or kifunensine increased core/hybrid-type NKCC1 expression but eliminated plasma membrane complex N-glycosylated NKCC1 and transport function. Together, these results suggest that (i) NKCC1 is delivered to the plasma membrane of COS7 cells independently of its N-glycan nature, (ii) most of NKCC1 in the plasma membrane is core/hybrid-type N-glycosylated, and (iii) the minimal proportion of complex N-glycosylated NKCC1 is functionally active.
منابع مشابه
Plasma Membrane Targeting of Endogenous NKCC2 in COS7 Cells Bypasses Functional Golgi Cisternae and Complex N-Glycosylation
Na+K+2Cl- co-transporters (NKCCs) effect the electroneutral movement of Na+-K+ and 2Cl- ions across the plasma membrane of vertebrate cells. There are two known NKCC isoforms, NKCC1 (Slc12a2) and NKCC2 (Slc12a1). NKCC1 is a ubiquitously expressed transporter involved in cell volume regulation, Cl- homeostasis and epithelial salt secretion, whereas NKCC2 is abundantly expressed in kidney epithel...
متن کاملPredominant Expression of Hybrid N-Glycans Has Distinct Cellular Roles Relative to Complex and Oligomannose N-Glycans
Glycosylation modulates growth, maintenance, and stress signaling processes. Consequently, altered N-glycosylation is associated with reduced fitness and disease. Therefore, expanding our understanding of N-glycans in altering biological processes is of utmost interest. Herein, clustered regularly interspaced short palindromic repeats/caspase9 (CRISPR/Cas9) technology was employed to engineer a...
متن کاملMicroRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene.
The CFTR (cystic fibrosis transmembrane conductance regulator) gene shows a complex temporal and spatial pattern of expression that is controlled by multiple cis-acting elements interacting with the basal promoter. Although significant progress has been made towards understanding these genomic elements, there have been no reports of post-transcriptional regulation of CFTR by miRNAs (microRNAs)....
متن کاملExpression of the Na-K-2Cl Cotransporter in Branchial Mitochondrion- Rich Cells of Mozambique Tilapia (Oreochromis mossambicus) Subjected to Varying Chloride Conditions
733 T he Na-K-2Cl cotransporter (NKCC) mediates the coupled movements of Na, K, and Clacross plasma membranes of animal cells. The NKCC plays an important role in ion movements across polarized epithelia and is also known to be involved in regulating cell volume and intracellular Cllevels (Lytle and Forbush 1996, Haas and Forbush 1998). The NKCC is a member of the Na-coupled group of cation-chl...
متن کاملNew hybrid nanomaterial derived from immobilization of a molybdenum complex on the surface of multi-walled carbon nanotubes
In this work, we report a new well dispersed molybdenum complex attached through the mediation of aminopropylsilyl groups on the surface of multi-walled carbon nanotubes (MWCNTs). The prepared hybrid nanomaterial was characterized with different physicochemical methods such as Fourier transform infrared and atomic absorption spectroscopies, transmission electron microscopy, energy-dispersive X-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015